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J. Phys. A: Math. Gen. 15 (1982) 2111-2122. Printed in Great Britain 

Elementary bound states for the power-law potentials 

M Znojil 
Nuclear Physics Institute, Czechoslovak Academy of Sciences, 250 68 Rei near Prague, 
Czechoslovakia 

Received 28 April 1981, in final form 27 January 1982 

Abstract. We show how the exact polynomial x exp(polynomia1) bound-state solutions 
to the radial Schrodinger equation may be constructed for any potential of the form 

where D is a finite set of arbitrary rational numbers and some of the couplings Gs are 
not independent. 

1. Introduction 

The radial Schrodinger equation 

2 1  d2 A -5  
-7 W )  + F  cL(r) + V(r)$(r)  = E W )  

h = 1 + 1 / 2 ,  

d r  

1 = 0,1,  . . . . 
with the simple harmonic-oscillator potential 

and its anharmonic generalisations 

4 
CL = CL(q)(r) = air2’ 

i =  1 
(3) 

20-1 

may be used not only in the quantum mechanics ( V ( r )  represents an arbitrary analytic 
potential in the limit q --f CO) but also, e.g., in the Reggeon field theory on the lattice 
(Fulco and Masperi 1979, q = 2). In these applications, the available numerical or 
perturbative solution methods are not always sufficient to specify the limitations 
of validity of the approximations (especially the convergence of the perturbation 
expansions) and to describe the analytic continuations and other interesting qualitative 
features of the solution (cf, e.g., Simon 1969). 

0305-4470/82/072111+ 12$02.00 @ 1982 The Institute of Physics 2111 
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When q 2 2 ,  not all of the merits of (1) as a simple model are lost. The first 
non-trivial (4  = 2, sextic) anharmonicity (3) was shown by Singh et a1 (1978) to lead 
to the complete analytic solution of (1) where $ = exp( -polynomial) X power series, 
and E = the root of a continued fraction. The q > 2 cases of (1) + (3) were solved later 
in a similar way (Znojil 1981). 

Even when q =2 ,  the structure of the exact solution of (1) remains rather 
complicated. Fortunately, provided that we fix properly one of the couplings g and 
consider the particular, exceptionally simple, solutions only, it is possible to replace 
both the continued fraction form of E and the infinite power series in I / /  by polynomials 
of degree N and 2 N - 2 ,  respectively. Singh et a1 (1978, q =2)  constructed the 
corresponding N terminating (exact and elementary) eigenstates of the sextic anhar- 
monic oscillator in an explicit way. 

In a similar spirit, Flessas and Das (1980) and Magyari (1981) conjectured an 
application of the termination requirement to any q > 2 and constructed examples of 
an exact eigenstate for N = 1 and 2 and for q = 3. The former article also inspired 
our present considerations: In brief, we shall be interested in the particular terminating 
solutions to the Schrodinger equation (1) with the arbitrary rational power-law inter- 
action 

V ( r )  = 1 G,r‘ 
Z € D  

( D  =finite set of the rational numbers) 
actions (3) and contains also the singular 

(4) 

since it generalises the ‘solvable’ inter- 
components with z < -2. In more detail, - 

we are motivated by the following physical, formal and methodical respective reasons: 
(i) A priori, any phenomenological interaction V ( r )  may be singular in the origin. 

In the nucleon-nucleon or inter-molecular interactions, the singular components of 
V ( r )  (short-range ‘core’ with z < - 2 in (4)) represent at least as important a ‘realistic’ 
modification of (2) as the more or less arbitrary asymptotic confinement introduced 
by (3). In this context, the exceptional exact and elementary solution, if available, 
could serve as a simple quantitative model, or at least as a useful device for testing 
the various practically oriented approximations and (possibly not fully rigorous) 
regularisation schemes. 

(ii) The transition (2) + (3) does not incorporate the third ‘natural’ replacement of 
the parameter A by a polynomial 

Such a change would lead to the more consequent singular-anharmonic generalisation 

2q-1 2 p c 1  

i = O  j = l  
~ ( r )  = gir2‘ + C hp-” 

of (2). Here, the centrifugal part of (1) may be included into h l  = hi + 1(1+ 1). 
(iii) An extension of the idea of Singh et al (1978) to the potentials ( 5 )  and (4) 

seems to be straightforward. Moreover, the termination method itself might provide 
a useful guide to its possible non-termination generalisations in the future. 
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2. Results 

2.1. Canonical form of the potential 

The form ( 5 )  of the potential is universal-it is equivalent to the general choice of 
forces (4) with an arbitrary finite set of the rational exponents D. Indeed, the 
corresponding new Schrodinger equation with the potential (4) may be written in the 
form 

l - t 2 + 4 h i  2 p  hj+l 
W ( x )  = + C m  

4 t 2 X 2  ; = I  t x 

with the properly chosen non-negative integer parameters p ,  q(  # 0) and t (  # 0). Its 
equivalence to the polynomially anharmonic and singular oscillator ( 1 )  + ( 5 )  follows 
simply from the change of variables 

f 
x = r ,  , y ( x )  = r (1- f ) ’2$(r )  (7) 

with 1 s t s 2q and go = -E. Obviously, for different t’s, the energy 77 coincides with 
the different g’s. Keeping this in mind, we may often merely consider t = 1 without 
loss of generality. It is also worth mentioning that the choice of a negative t, 1 s -t s 2p 
is possible. This reflects a purely formal r t, l / r ,  p t, q and h - g symmetry of the 
Schrodinger equation (6). 

2.2. Factorisation of the wavefunction 

When we consider the asymptotic (r+m) and threshold ( r + O )  regions, we may try 
to represent the solution of (6) or rather of its canonical form ( 1 )  + ( 5 )  via a factorisation 

Pir2i/2i - f yjr-2j/2j)p(r) 
i = l  j = l  

2 n i 2 . 7  
N* 

n = N ,  
p ( r ) =  C anr 

where N 1  = -a and N2 = +CO in general. Of course, we have to choose 

hp+n+l- ~ ~ + ~ - j ~ j  ) , n = p - l , p - 2 ,  . . .  1 
P - 1  

j = n + l  

which is compatible with the special g - a, @ transformation in (3) ,  and with p ( r )  = 
exp(O(r2) +O(r-’)) for r + 0 and r + CO. 

Provided that p ( r )  degenerates to a polynomial ( N I  >--CO and N2< +CO) for some 
particular potential, energy and p 2 1, the physical boundary conditions are satisfied 
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in a trivial way, as a consequence of the termination of cp(r). For p = 0, the regular 
behaviour of $(r) in the origin has to be guaranteed by an independent though standard 
requirement 2(N1 + s) > t .  

2.3. Selfconsistent construction of an exact and elementary bound state (main result). 

When we insert (8) and ( 5 )  into ( l ) ,  we arrive at the recurrences 

1 [ - gi - 4Pitl(n + s - i)  - 
q-1 

i = O  
min(p,q) 

+ - h l +  (2n + 2 s  +2)(2n + 2 s  + 11-2 1 Pkyk]a,,+l 

+ 1 [ -hi+4yj-l(n + s  + j ) - ~ ~ ] a , , + ~  = 0, 

[ k = l  

P + l  

j = 2  

i min(p,q-i-1) 

Gi = (2i + 1)Pi+1- 1 @kPPi-k+l+ 2 1 Y m P m + i + l  
k = l  m = l  

for the Taylor coefficients. Here, n runs fron N I  - p  - 1 up to N2 + q - 1 and 

UN,-j = 0, j = 1 , 2 ,  . . .  Q, Q = p + q  
and 

aN2+i = 0, i = 1,2,  . . . Q. 
The first and last row of (10) are mere definitions 

hp+1=4~p(Nl+s)-Hp+l ,  P + O  

of the constants hp+l and gq-,, respectively, while the remaining K = N + Q -2 = 
N2 - N1 + 1 + Q - 2 rows have the matrix form 

\ UN2 I 
of an overcomplete system of the algebraic equations. They define not only the N 
Taylor coefficients a, but also the selfconsistent energy and Q-2  couplings in ( 5 ) .  
The K x N-dimensional matrix Z has Q + 1 diagonals, denoted 

Zmm+l = CL') = Bm, m = 1,2,  . . . N - 1 

m = 1 ,2 , .  . . N, 

m = 1,2 ,  . . . , N - 1 

m+rm . = cz)+i, i = O ,  1 , .  . . , Q-2 

z m  + Q - 1 m = A m  + 0- 1, (15) 
the explicit form of which follows easily from the comparison with (10). 
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The simplest non-trivial example of our approach with t = p = 4 = 1, degree N = 1 
(NI = N2) and even ‘parity’ 2s = 0 leads to the three equations (12)-(14) for the energy 
and four couplings. Their simple solution reads 

hl = hi  + I ( / +  1)=2N1(2N1- 1)-2(g1h3)”2 

h2 = (4N1- 3)h:” 
E = - g  0 - - (4Nl-k 1)g:” 

and defines the potential ( 5 ) ,  bound state (8) and its energy E in terms of the free 
coupling constants g l  > 0 and h3 > 0. 

2.4. Ground states ( N  = 1)  

When we choose N = 1 ,  the function cp(r) = a l  r Z s t 2  in ( 8 )  has no nodal zeros and 
$ ( r )  or ~ ( x )  is a ground state. From (10)  we get the requirements 

Bo = 0,  CjICll = o ,  k = O , l , .  . . , Q - 2 ,  Ao=O (16)  

which represent an explicit solution of the selfconsistency restrictions (12) ,  (13)  and 
(14) .  For p = 0, this solution degenerates to the decoupled one-to-one relations 

aiil = -Pi+*(4s + 2i + 5 ) ,  i = O , l ,  . . . , q  (17) 
between the couplings defined in (3) .  It preserves the form of (13) ,  reproduces and 
simplifies the explicit N = 1, 4 = 2, 3 ,  t = 1 results of Flessas and Das (1980) and 
Magyari (1981) and generalises them to any q and t in the regular ( p  = 0) polynomially 
anharmonic oscillator potential W ( x )  in (6) .  

When p # 0, we may introduce the new couplings p and 6 instead of g (or P ( g ) )  
and h (or y ( h ) ) ,  by the prescription 

pi = hp+l-i +Hp+l-i(P, Y ) ,  i = 0, 1, . . . , p 

p p + j  = gj-l+ Gj-l(P, Y ) ,  6 p + j  = 4Pj3 j = l , 2 , , .  .,q. 

si = -4y p-1 ,  

(18)  

Then, an insertion of the formulae 

c:) = pi+l + ai+1(n + s - i), i # p - 1  
c y )  - - p p  -2(n  + s)(2n + 2s - 1)  

into (16)  enables us to preserve the full analogy with p = 0 and formal symmetry 
between the p’s and 6’s in the N = 1 states. 

2.5. Multiplets of states 

When we interpret ( l l a )  as a initialisation of the recurrences ( l o ) ,  we may easily 
verify that the Taylor coefficients a,  in ( 8 )  or (14)  may be given the compact form 

aN,+n = ( -  l)“aN, det ~ ( ~ ) / ( B I B z  * * Bn) 

(20a)  
2 1 1  2 1 2  * * *  21 n 

. . .  
Z n n  
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where aN, is an arbitrary normalisation ( = 1) and n = 1, 2, , . . N - 1. In this formula- 
tion, the remaining n = N, N + 1, . . . items (rows in (14)) are equivalent to the 
termination requirements (1 1 b) and may be replaced by the explicit determinantal 
selfconsistency conditions 

det Z ( N  - 1 + n )  = 0, n = l , 2  , . . . ,  Q-1. (21a 

Also equation (13) may be identified with (21a) at n = Q. 
Alternatively, we may replace (20a) by the analogous formula 

with the same range of n and, say, aN2 = 1. The role of the selfconsistency (termination) 
requirement is now played by (1 l a ) ,  i.e., 

det Z * ( N -  1 + n )  = 0, n = 1,2,  . . . , Q - 1 (216) 

which reproduces (12) at n = Q. For simplicity, we may shift s in such a way that 
N 1  = 1 and N2 = N in (20). 

Among the (2Q - 1) constants g( = go, gl, . . . , g,-~), h( = hl ,  h2,. . . , hp),  P (  = 
P I ,  p2, .  . . , p,) and y (  = y l ,  y 2 , .  . . , y p ) ,  the Q - 1 selfconsistency relations (21a) or 
(216) are to be satisfied, The choice of the variables to be fixed is arbitrary. For both 
the physical and formal reasons, it is preferable to pick up the p ’ s  (g’s and h’s)  as the 
dependent variables: The 8’s (p’s and y’s) determine the asymptotics in (8) and they 
enter Z in an n- and p-dependent way (cf (19)). Obviously, the numerical specification 
of the selfconsistent g’s and h’s would be more straightforward; it fixes in practice 

tial W(r)  and completes the construction of an exact and elementary solution (8), (9), 
(20) and (7) to the Schrodinger equation (6). 

In principle, assuming that the potential W ( r )  is not varied (and the 8’s may be 
fixed as well), a whole multiplet of some M > 1 terminating solutions (8) may be 
constructed and characterised by the four remaining variable parameters-degree N, 
exponent s, energy T (  - g,-l - pp+r for t s 4, or - &+,-, for 4 < t s 24) and angular 
momentum I ( h l  - / ( I  + 1) +constant). Nevertheless, for t # 4 and t # 24, the choice 
of N is unique and related to the potential by (13). Similarly, equation (12) fixes s 
when p # 0. In the ‘exceptional’ f = 4 or t = 24 cases, the energy becomes a function 
of N or vice versa (cf the harmonic ( t  = q )  and coulombic ( t  = 24) spectra which are 
given by (13) for Q = q = 1). Similarly, for p = 0, equation (12) prescribes the value 

only the ‘non-dominant’ components r -  , r  , . . . ,  , of the poten- 2 ( p + l ) l r  -2p/1 , .2(4-2)/r , . X q - l ) / r  

1 2 1/2 s = -2 + i t  [constant + ( I  + 2) ] 

as a function of 1. Thus, when we consider the Ith partial wave, the only variable 
parameter is in fact just the energy. 

Let us assume for definiteness that 4 # t # 24. Then, we may pick up the M > 1 
energies as roots of the selfconsistency equation (21a), n = 1 (i.e., M s N ) ,  while the 
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(2Q - 2) free parameters must satisfy in general the (Q - 2)M remaining energy- 
dependent selfconsistencies (21a) ,  n # 1 .  Thus, the multiplicity M cannot exceed the 
v a l u e M ~  =max(2Q-2)/(Q-2),  

M z = N ,  M3=4 ,  M4=3 ,  M Q = ~ ,  Q > 4  (22) 

unless some of the selfconsistency equations appear to be independent of energy. 
After a similar discussion concerning t = q or t = 2q, we may conclude that in practice, 
the multiplicity M is strongly restricted but, at the same time, the numerical selfcon- 
sistent construction of a terminating doublet (pair of the exact eigenstates) should be 
feasible for any force (4) .  

As a simple and interesting example, we may consider now the p = 4 = 1 harmonic 
oscillator with a repulsive core 

The form of this equation is symmetric with respect to the coordinate inversion 
r - ,  l / r ,  and the elementary bound states are given of course by (8) and (20), with 
non-negative integer (angular momentum) 1 in h l  = hi  + I(/+ l), with the exponent 
s = h2/4y1 -a  given by (12), and with the energies defined by the formula ( 1 3 ) ,  
E = p i ( 4 N +  hz/Yi).  

The varying choices of N might correspond to the different states for the same 
potential. Indeed, the selfconsistency condition (14)  becomes an N-dependent alge- 
braic equation 

c‘,“ = C ~ ” ( N ) = ~ ~ ~ ( N + I - ~ ) ,  n = 1 , 2 ,  . . . N. 

It depends on three variables only (say, x = ply1, y = h2/ y1 and t = hl + 2p!y1), 
since we may fix one of the couplings by the scaling r + constant x r. Their proper 
choice may therefore provide the three elementary bound states with N = N “ ) ,  N”’ 
and at most. 

The choice of the levels N‘” is not arbitrary. For illustration, let us pick up first 
the ground state, N = N‘” = 1 .  Then, equation (14*) implies that z = 2y. As a further 
consequence, we obtain also that a2 is identically.zero for any N, so that the next 
possible choice of N is N”’= 3. In this case, we get simply the second restriction 
y = -6 from (14*). In accordance with (20), N”’=  3 defines the first excited state 
(with one nodal zero) so that the comparison with the unperturbed harmonic oscillators 
is possible in principle. 

Since a4 = 0 and a s  = 1536x2(N - 1)(N - 3 )  # 0 for N > 3 ,  the second excited state 
must be represented by an infinite Taylor series p ( r )  ( N  = 00) which will not be 
investigated here. The third lowest choice of N‘3’ = 6 fixes the value of x = 24 and 
corresponds to the third excited state. We see that the spectrum of the harmonic 
oscillator with a core ceases to be equidistant. In this way, our construction of the 
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three elementary and exact bound states fixes the coupling constants in (l*), p1 = 1 
(scaling r + r / J p l ) ,  y1= 24, h2 = -144 and hi  = -60 - 1 ( 1 +  1). Similar constructions 
may be repeated for the other choices of N"'> 1 etc. 

2.6. The simplest potentials (Q < N) 

To illustrate (22), let us consider the first Q = p + q  = 2  group of the non-trivial 
potentials (4) as listed in table 1. Their terminating eigenstates and explicit energies 
may be obtained by the same method as described by Singh et a1 (1978, 1979) for 
p = O .  Indeed, the conditions (12) and (13) are accompanied by the only 'Hill- 
determinant' condition (21a), n = 1, which is solvable by diagonalisation. For p = 0, 
q = 2 and t = 1 or 3, it gives a terminating multiplet for M = M2 = N energies. In all 
the other cases ( t  = 2, 4 or p = q = 1,  t = 1, 2), the admissible energies are restricted 
by (13) as functions of an integer N, so that, a priori, we cannot construct more than 
M = 4 terminating states by the proper choice of all the four available couplings. 

For the more complicated potentials (Q > 2) and N > Q, the pair of equations 
(204) and (20b) (a,+l/al= b n ( p l , .  . . ,pn) and U N - " / ~ N  = CN-~(PQ-I,. . . , P Q - ~ ) ,  
respectively) is an overcomplete system equivalent to (14) when n = 1, 2, . , . , N - 1. 
Hence, we may interpret, say, the n 2 Q part of (20) as mere definitions of 

. , . , aN, and the identities a n + l / a N  = (an+l/al)  X ( a 1 / a N )  written in the form 

C n + l ( P Q - l ,  . 3 P m a x ( l , Q + n - N + l ) )  

= b n ( P 1 , .  * P n ) C l ( P Q - l , -  * * I PI), n = 1 , 2 , .  . . , Q - 1  (23) 

These determinantal equations as a coupled set of equations determining pl, . . . 
are to be solved numerically. 

2.7. The low-lying states (N s Q) 

We may expand (21a) and (216) with respect to the last row of Z and Z * ,  which gives 

(24a) 
min(Q- 1 , N +  i - 1) 

j =  i 
i = 0,1, * + - Q - 2  ( i )  

a N + i - j c N + i  = 0, 

and 

a i + l - j C y - l )  = -B.a. I l + l ,  i = l ,  2 , .  . . , N-1, 
j =  max(1 , i -N+ 1 )  

(246) 
= 0, i = N , N + l ,  ..., Q-1,  

Table 1. The class of potentials of the Singh type. 

Q P ~  I W ( r )  
Physical 
restriction 

2 0 2  1 ar-2 f br2 + cr4 f dr6 d > 0 ,  a > -a 
2 0 2  2 ar-2 f br-' f cr f dr2 d > O ,  a > -a 
2 0 2  3 ~ r - ~ f  br-4i3 f K 2 I 3  + dr213 d > 0 ,  a >-a 
2 0 2  4 arY2 f br-3/2 f c r i l  f dr-'12 E<O,a>-a 
2 1 1  1 arF6 f brF4 + crF2 + dr2 d > O , a > O  
2 1 1  2 + br-3 + cr-' + dr-' E<O,a>O 
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respectively. With respect to the linear p-dependence (19)  of the C’s, we may rewrite 
(24)  as explicit formulae of the type - 

pk =bk(al ,  3 amin(k+l,N)), k = 1,2 , .  . , , Q - 1  (25a)  
P Q - m  = C Q - m  ( U N ,  - 3 amax(1, N - m ) ) ,  m = 1 ,2 , .  . . , Q - 1 .  (25b)  

We may interpret (25)  also as an inverse of the first Q - 1 rows of (20)  and (21)  since 
a,+l/at = 6, in formulae ( a )  or U N - ~ / ~ N  = c ~ - ~  in (6) are linear functions of p, or 
P Q - ~ ,  respectively. Thus, the pair (25a) ,  (25b)  becomes equivalent to (14)  for N s Q 
and the trivial elimination of any Q - N p’s gives finally the coupled set 

Jk(a1, * * 7 amin(N,k+l))=~k(aN, * 9 amax(l,N-Q+k)) (26) 

k = k i , k z  ,..., kN-1CQ-1 

of the N - 1 nonlinear algebraic selfconsistency equations for the a’s. In the rest of 
the paper, we shall consider only (26) in more detail. 

2.8. Polynomially anharmonic oscillators ( p  = 0)  

The structure of (26) is mainly influenced by the changing position of the anomalous 
n2-dependent diagonal C:-” in Z for different p’s. Without any significant loss of 
generality, we may consider the regular potentials only, with p = 0, p = a, q = Q, S = p 
and C‘,p-” = B,. 

Equations (24a)  and (13)  may be written in the matrix form 

I .  I I  . I 
\o * * *  0 / \ P O /  

An explicit inversion of the left-hand-side matrix gives immediately (25a) ,  

. . .  . . .  
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Similarly, we get 

. . .  0 . . .  Bia2 0 

. . .  
M ( b )  = 1:; a1 0 *o*]-'[ Bza3 a2 

aQ " *  ai B O ~ O + I  ( Q - ~ ) u o  

directly from (24b). Here, the n2-anomaly enters in an explicit way and the matrix 
M'b' may easily be shown to read 

(29b) I =o ,  1,.  . . M'b' - 
k + l k  - [(- l)'/a?'] det s1+1, 

a1 0 * * '  

3a4 a3 a2 a1 9 k Z 1  

(I+l)ar+2 al+l a/ ' * a2 

si+1 = 

a2 1 \Bl+iai+2 ar+i . . .  
The analogous determinantal formulae may systematically be derived for any p # 0 
but this will not be done here. 

2.9. The N = 2 example 

For p = 0 and N = 2, equations (28a) and (286) acquire simple forms 

and 
i - 1  m i 

a i= -4P i ( l+~)+4  1 (-l)m(%) Pi-m +BI( -2) 
m = l  a1 

i = 1,2,. . . Q (30b)  

respectively. Obviously, a comparison (26) of (30a) with (30b)  at any index i gives 
the same polynomial equation 

5 
Q 

j = l  
c (-x)'pj=2s+z 

for the only unknown parameter x = a1/a2. The roots of (31) may be inserted into 
(30a) to determine all the couplings and energy t7 ( -  at, t s Q, or - Q < t s 2Q). 
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Equation ( 3  1 )  reproduces the well known Laguerre polynomial harmonic case 
with Q = 1 and a l  = - (4s + 5)/2p1. For Q > 1, it encompasses and simplifies all the 
other known N > 1 terminating solutions of Singh et a1 (with N = Q = q = 2 and for 
t = 1 in the 1978 paper and for t = 2 in the 1979 Letter) and Magyari (1981, cf of his 
secular equation (20)  for Q = 3,  N = 2 and t = 1 ) .  

The two different roots x of (31)  correspond to the two different potentials W(r)  
in ( 6 )  since both the constants and Pr are linear functions of x. Hence, there 
are no N = 2 multiplets-this was observed by Flessas and Das (1980) with Q = 2. 

2.10. The N = 3 example 

It is easy to infer from (24)  that the restriction MQ N - 1 (cf the preceding paragraph) 
must be added to (22)  for any N 3 2 and Q > 2. Thus, the simplest example which 
permits the energy doublets necessitates N equal to three. With p = 0, we have in (28)  

det f i + ~  = det S!",:" = a2Rl - 2 ~ ~ a 3 R 1 - ~  

I + I  - Bla2R1- B~ala3R1-1 det S(k=l)  - 

where 

a2 al  0 
a3 a2 a1 0 . . .  =det  : 

0 . . .  
a3 a2 a1 0 

0 0 a3 a2 0 . . .  

x det ro z-l  . . .  ]xde t [2y  I , .  i w  * * ]  

2w = a 2 / y z  112 z = a l ,  1 /2  = y1z1U1(w), y = a 3  , 
and U l ( w )  denotes the Chebyshev polynomial of the second kind (Gradshteyn and 
Ryzhik 1971). Hence, we get from (28a)  

Q-i I! 2 

ai = -4Pi(3 + s) + 8 1 ( -  l)'+'( 5, Pi+lTl(w) i =  1 , 2 , .  . . Q  (33a)  
I = 1  a3 

with the Chebyshev polynomials Tl(w)  of the first kind. 
Similarly, from (286)  we arrive at the formula 

(2wB1 U ~ - I ( W ) -  B z U ~ - Z ( W ) )  i = 1 , 2 , .  . . Q. (336)  

Finally, the selfconsistency (26) for the only two unknown variables w = a2/(2a1a3)1'2 
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and U = (al/a3)1’2 may be written in the form 

with any pair of indices 1 s i l <  i 2  s Q. 

of an 18th degree polynomial. 
When Q = 3, we may eliminate w algebraically and specify U numerically as a root 
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